翻訳と辞書 |
Taft Hopf algebra : ウィキペディア英語版 | Taft Hopf algebra In algebra, a Taft Hopf algebra is a Hopf algebra introduced by that is neither commutative nor cocommutative and has an antipode of large even order. ==Construction==
Suppose that ''k'' is a field with a primitive ''nth root of unity ζ for some positive integer ''n''. The Taft algebra is the ''n''2-dimensional associative algebra generated over ''k'' by ''c'' and ''x'' with the relations ''c''''n''=1, ''x''''n''=0, ''xc''=ζ''cx''. The coproduct takes ''c'' to ''c''⊗''c'' and ''x'' to ''c''⊗''x'' + ''x''⊗1. The counit takes ''c'' to 1 and ''x'' to 0. The antipode takes ''c'' to ''c''−1 and ''x'' to –''c''−1''x'': the order of the antipode is 2''n''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Taft Hopf algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|